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Abstract
We discuss topics related to finite-dimensional calculus in the context of finite-
dimensional quantum mechanics. The truncated Heisenberg–Weyl algebra
is called a TAA algebra after Tekin, Aydin and Arik who formulated it
in terms of orthofermions. It is shown how to use a matrix approach
to implement analytic representations of the Heisenberg–Weyl algebra in
univariate and multivariate settings. We provide examples for the univariate
case. Krawtchouk polynomials are presented in detail, including a review
of Krawtchouk polynomials that illustrates some curious properties of the
Heisenberg–Weyl algebra, as well as presenting an approach to computing
Krawtchouk expansions. From a mathematical perspective, we are providing
indications as to how to implement infinite terms Rota’s ‘finite operator
calculus’.

PACS numbers: 03.65.Fd, 11.30.Pb, 02.10.De, 11.10.Nx
Mathematics Subject Classification: 15A33, 17B99, 26C99, 81R10

1. Introduction

Ever since Weyl’s ‘Group Theory and Quantum Mechanics’, the question of finite-dimensional
representations of the canonical commutation relations has been of interest. The simplest
formulation, two operators A,B on a Hilbert space obeying

[A,B] = c1

for a nonzero scalar c, 1 being the identity, is quickly dispatched on a finite-dimensional space
H by taking traces, the left-hand side yielding zero, and the right-hand side giving c dimH.

We illustrate the interesting phenomenon of ‘Krawtchouk ghosts’, where the Krawtchouk
polynomials, polynomials orthogonal with respect to a binomial distribution, are an infinite
family of polynomials that carry a representation of the HW commutation relations, but span a
finite-dimensional Hilbert space, all but a finite number of the polynomials having zero norm.
It turns out that the Krawtchouk polynomials in each dimension are a basis for corresponding
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representations of su(2), used ubiquitously in the current work on quantum information.
However, they do not appear explicitly yet in the current work on quantum information.

Mathematical physicists have used Krawtchouk polynomials to develop finite-dimensional
quantum mechanics. See Lorente [8, 9] for the work related to this approach. Atakishiyev and
Wolf [1, 2] have used Krawtchouk polynomials to formulate finite-dimensional wave functions
to replace Gaussian packets, e.g. in optics. Santhanam [13] has discussed the difficulties as well
as the possibilities of finite-dimensional quantum mechanics. In other domains, Krawtchouk
expansions have been used in image analysis showing results superior to many commonly
used techniques [17].

The approach here will show how up to a given order one may produce representations
of the HW algebra on spaces of polynomials that we call ‘analytic representations’, whereby
corresponding to any function analytic in a neighborhood of the origin in C, one produces
a sequence of canonical polynomials, that are closely related to many of the polynomial
sequences arising in physics, probability theory, combinatorics, etc [5, 11, 12].

Another approach to finite-dimensional representations of the canonical commutation
relations is via replacing the identity by an operator E with the defining relations

[A,B] = E, [A,E] = [B,E] = 0, (1)

whereby E is central. This is illustrative of the inapplicability of Schur’s lemma where a
central element must be a multiple of identity as for finite-dimensional representations of
unitary groups. The finite-dimensional representations of relations (1) have been found using
a diagrammatic approach in [7].

There are three main aspects of this work.

(1) We make the observation that the TAA algebra is the appropriate formulation for
abstracting the structure of the truncated Heisenberg–Weyl algebra. We mention related
work in the area of discrete/finite quantum mechanics.

(2) We show that for analytic representations of the HW algebra, computations using
truncated HW can be done order-by-order numerically, avoiding the necessity for symbolic
computations.

(3) We show some properties of Krawtchouk polynomials that are of interest with regards to
HW representations.

The algebra we call here ‘TAA algebra’ was presented by Tekin, Aydin and Arik in [14].
It is generated by an operator a and its adjoint a∗. Setting ν = a∗a, the commutation rule
defining the algebra is [a, ν] = a. Taking adjoints gives the complementary rule [ν, a∗] = a∗.
In other words, we assume that ν and a generate the two-dimensional Lie algebra of the affine
group. Writing it out as

aa∗a − a∗aa = a, (2)

we see that the commutation rule aa∗ − a∗a = 1 of the Heisenberg–Weyl algebra has been
multiplied by a on the right-hand side. This modification is enough to yield finite-dimensional
representations, including the truncated Heisenberg–Weyl algebra (HW algebra) given by the
operators X = multiplication by x and D = d/dx acting on polynomials of a given bounded
degree. Writing matrices for these operators, we will see that they obey equation (2).

This paper may be thought of as realizing Rota’s idea of ‘finite operator calculus’
[11, 12] in a truly finite way. There is work of Vein along similar lines [15, 16]. The
main feature here is that the operator calculus is done on finite-dimensional spaces and can
be carried out explicitly using matrices. The approach in this paper is based on the algebraic
properties of the operators and includes a formulation for the multivariable case. The one-
variable case is dual to that presented in [4].
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2. Orthofermion formulation

Here we recall the orthofermion approach of [14]. Start with a set of operators {c1, . . . , cp},
with p being a positive integer and form the star algebra generated by the {ci} modulo the
following relations:

cicj = 0 cic
∗
j + δij

p∑
k=1

c∗
kck = δij 1 (3)

where 1 is the identity operator. Setting � = 1 − ∑p

k=1 c∗
kck (as in [10]), we can write this

last relation as

cic
∗
j = δij�,

where one readily shows from the defining relations (3) that �2 = �, i.e. � is a projection as
suggested by the notation.

It follows from the defining relations that �ck = ck and from the second relation of
equation (3) we have the useful relation

cic
∗
j ck = δij ck. (4)

Within the orthofermion algebra, following [14], modifying slightly their formulation, we
set

a = c1 +
p∑

k=2

kc∗
k−1ck a† = c∗

1 +
p∑

k=2

c∗
kck−1.

Using equation (4), we get

aa† − a†a = 1 − (p + 1)c∗
pcp,

which then yields the relation corresponding to equation (2) of the TAA algebra.

3. Calculus with matrices

Notation. We will denote the matrix corresponding to an operator by using a ˆ symbol. Thus,
X̂ is the matrix corresponding to the operator X, etc.

Restricting the differentiation operator to the finite-dimensional space of polynomials of
degree less than or equal to p is no problem. Use the standard basis {1, x, x2, . . . , xp}. For
p = 4, we have

D̂ =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

with the extension to general p following the same pattern. However, multiplication by x must
be cut off. If we define X xi = xi+1 for i < p and X xp = 0, we no longer have the relation
DX − XD = 1. Instead, we have the TAA relation

DXD − XDD = D.
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The matrix of X has the form, for p = 4,

X̂ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ .

Note that X̂p+1 = 0. To keep in line with the powers of x, we label the basis elements starting
from 0. So let ek denote the column vector with the only nonzero entry equal to 1 in the
(k + 1)st position. The vacuum state is � = e0, satisfying D̂� = 0. And X̂k� = ek , for
1 � k � p. As expected, these are raising and lowering operators satisfying

X̂ek = ek+1θkp, D̂ek = kek−1,

where θij = 1 if i < j , zero otherwise.
With the inner product 〈en, em〉 = δnm n! , we indeed have D̂∗ = X̂.
Let Eij denote the standard unit matrices with all but one entry equal to zero, (Eij )kl =

δikδjl , 1 � i, j, k, l � p+1. The connection with orthofermions is given by the (p+1)×(p+1)

matrix realization

ĉi = E1i+1

for 1 � i � p. The orthofermion relations hold and particularly for this realization

ĉ∗
i ĉj = Ei+1j+1.

Note that �̂ = E11 and that the star-algebra generated by ĉi is the full matrix algebra.
As long as X never multiplies the power xp, the matrix implementation agrees with usual

calculus. The TAA relation formulates this algebraically.
The following theorem shows that D̂ and X̂ not only do not generate a Heisenberg algebra,

but, in fact, are as far as possible from doing so.

Theorem 3.1. For p > 0, let D̂ and X̂ be (p + 1) × (p + 1) matrices defined by
D̂ = ∑p

k=1 k Ek k+1, X̂ = ∑p

k=1 Ek+1 k . Then the Lie algebra generated by {X̂, D̂} is sl(p + 1).

Proof. For convenience, set n = p + 1. First we have

H = [D̂, X̂] = −pEnn +
p∑

k=1

Ekk.

Set ξ1 = X̂, η1 = D̂ and H1 = H . For 2 � k � n, let ξk = H(
←−−
adX̂)k and ηk = (adD̂)kH ,

where (adA)B = [A,B] and A(
←−−
adB) = [A,B]. Then it is easily checked by induction that

ξk = −nEnn−k+1 and ηk = akξ
†
k

for nonzero constants ak, † denoting matrix transpose. Thus, we obtain Ein and Eni for
1 � i � p. Noting that [Ein, Enj ] = Eij if i �= j , we have all of the off-diagonal E’s. And

Hk = [ηk, ξk] = −nak(En−k+1n−k+1 − Enn)

fill out the Cartan elements of sl(n). �
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3.1. Examples

Here we look at some important operators.

Example 3.2. The number operator is XD. For p = 4, we have

X̂D̂ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

⎞
⎟⎟⎟⎟⎠ .

This operator multiplies en by n, for 0 � n � 4. In general, we have

X̂D̂ =
p∑

n=0

nEn+1n+1,

which multiplies en by n, for 0 � n � p.

Example 3.3. The Hermite polynomials, occurring in oscillator wave functions, are
eigenfunctions of the Ornstein–Uhlenbeck operator, XD − tD2, t > 0, which for p = 4
takes the form ⎛

⎜⎜⎜⎜⎝

0 0 −2t 0 0
0 1 0 −6t 0
0 0 2 0 −12t

0 0 0 3 0
0 0 0 0 4

⎞
⎟⎟⎟⎟⎠ .

The eigenvector for each eigenvalue λ = 0, 1, 2, 3, 4 gives the coefficients of the corresponding
polynomial Hλ(x, t). The family of polynomials {Hλ(x, t)}λ∈N provide an orthogonal basis
for L2 with respect to the Gaussian measure with mean zero and variance t.

Example 3.4. The translation operator Tt = etD acts on functions as etDf (x) = f (x + t).
For p = 4,

T̂t =

⎛
⎜⎜⎜⎜⎝

1 t t2 t3 t4

0 1 2t 3t2 4t3

0 0 1 3t 6t2

0 0 0 1 4t

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

generally, with columns given by binomial coefficients times powers of t, corresponding to
the action x → x + t on the basis polynomials xj . The matrix T̂t can be computed as the
exponential of tD̂ defined as a power series: 1 + tD̂ + t2D̂2/2! + · · · .

Example 3.5. The Gegenbauer polynomials satisfy

[(XD + α)2 − D2]Cα
n (x) = (n + α)2Cα

n (x)

(see e.g. [3]). Thus, we have the Gegenbauer operator, Gα = (XD + α)2 − D2, which for
p = 4 takes the form

Ĝα =

⎛
⎜⎜⎜⎜⎜⎝

α2 0 −2 0 0
0 (1 + α)2 0 −6 0
0 0 (2 + α)2 0 −12
0 0 0 (3 + α)2 0
0 0 0 0 (4 + α)2

⎞
⎟⎟⎟⎟⎟⎠

,
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where the spectrum is evident along the diagonal. Up to order p, one obtains the Gegenbauer
polynomials with coefficients given by the eigenvectors of Ĝα .

3.2. Multivariable calculus with matrices

Here we extend to N variables. For matrices, A,B, the tensor product A ⊗ B denotes the
Kronecker product of the two matrices. That is, if A is n × n and B is m × m, then A ⊗ B is
nm × nm with entries formed by replacing each entry aij in A with the block matrix aijB. For
products of more than two matrices, we conventionally associate with the left.

For a fixed p, we have (p+1)×(p+1) matrices D̂ and X̂. Let I denote the (p+1)×(p+1)

identity matrix. Then we set

D̂j = I ⊗ I ⊗ · · · ⊗ D̂ ⊗ I · · · ⊗ I (D̂ in the j th spot)

X̂j = I ⊗ I ⊗ · · · ⊗ X̂ ⊗ I · · · ⊗ I (X̂ in the j th spot).

Then D̂j and X̂j will satisfy the TAA relations while [D̂j , X̂i] = [X̂j , X̂i] = [D̂j , D̂i] = 0
for i �= j .

4. Analytic representations of the HW algebra: canonical polynomials

Now we would like to discuss analytic representations of the HW algebra. These are infinite-
dimensional representations in the sense that they act on a basis for the vector space of
polynomials in a given set of variables {x1, x2, . . . , xN }. Basic to our approach is the use of
canonical variables which are functions of X and D obeying the HW relations on an infinite-
dimensional space, which restricts to the TAA relation on spaces of polynomials in x of a
given bounded degree.

Let us review the basic construction and notations for the general, multivariable, case.

Notation. We use the convention of summing over repeated Greek indices, irrespective of
position.

Given V : CN → CN , V (z) = (V1(z1, . . . , zN), . . . , VN(z1, . . . , zN)) holomorphic in a
neighborhood of the origin, satisfying V (0) = 0, we construct an associated Abelian family of
dual vector fields. Corresponding to the operators Xi of multiplication by xi, we have the partial
differentiation operators, Di. In this context, a function of x = (x1, . . . , xN), f (x), is identified
with f (X)1, the operator of multiplication by f (X) acting on the vacuum state 1, with Di1 = 0,
for all 1 � i � N . We define operators V (D) = (V1(D1, . . . , DN), . . . , VN(D1, . . . , DN)).
These are our canonical lowering operators, corresponding to differentiation.

Denoting the Jacobian
(

∂Vi

∂zj

)
by V ′(z), let W(z) = (V ′(z))−1 be the inverse (matrix

inverse) Jacobian. Then the boson commutation relations extend to [Vi(D),Xj ] = ∂Vi

∂Dj
. Now

define the operators

Yi = XμWμi(D).

These are our canonical raising operators, corresponding to multiplication by Xi. We have

[Vi, Yj ] = δij 1.

Thus, the canonical system of raising and lowering operators is {Yj }, {Vi}, 1 � i, j � N .
The essential feature, which has to be checked, is that [Yi, Yj ] = [Vi, Vj ] = 0. Note that
exchanging D with X is a formal Fourier transformation and turns the variables Yi into the
vector fields Ỹi = W(x)μi

∂
∂xμ

. Thus, the Yi are dual vector fields [5].

6
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Notation. We complement the standard notations used along with V and W , letting U denote
the inverse function to V, i.e. U ◦ V = V ◦ U = id. Explicitly, U(V (z)) = z.

Observe that since W = V ′−1, we have W(z) = U ′(V (z)). In other words, converting
from z to V acting on functions of the canonical variables Yi, we have the recurrence relation

X = YU ′(V )−1 .

Using multi-index notation, n = (n1, . . . , nN), vn = v
n1
1 v

n2
2 · · · vnN

N , the main formula
(cf [5, p 185, equation (1)]) is

exp(vμYμ)1 = exp xμUμ(v) =
∑
n�0

vn

n!
yn(x).

This expansion defines the canonical polynomials: yn(x) = Yn 1.

4.1. Canonical Appell systems

An Appell system, {hn(x)}, in one variable is a system of polynomials providing a basis for
the vector space of polynomials with deg hn = n, n = 0, 1, 2, . . . , such that Dhn = nhn−1.
Defining the raising operator R by Rhn = hn+1, we have [D,R] = 1, thus a representation of
the HW algebra. (See [6, v 3, Ch. 1] for further elaborations.)

Introducing a Hamiltonian H(z), in this context the only requirement being analyticity in
a neighborhood of the origin in CN , we have the time evolution

exp
(−tH(D)

)
exU(v) = exU(v)−tH(U(v)) =

∑
n�0

vn

n!
yn(x, t). (5)

An Appell system of polynomials has a generating function of the form

exp (xz − tH(z)) =
∑
n�0

zn

n!
hn(x, t).

For the canonical Appell system, we have

exp (xz − tH(z)) =
∑
n�0

V (z)n

n!
yn(x, t) (6)

and we recover (5) via the inversion z = U(v), which we interpret as changing to canonical
variables.

Observe that each of the polynomials yn(x, t) is a solution of the evolution equation

∂u

∂t
+ H(D)u = 0.

5. Canonical calculus with matrices

First consider the case N = 1. We have a function V (z) analytic in a neighborhood of the
origin in C, normalized to V (0) = 0, V ′(0) �= 0. Let W(z) = 1/V ′(z) have the Taylor
expansion

W(z) = w0 + w1z + · · · + wkz
k + · · · .

The corresponding canonical variable is Y = XW(D), satisfying [V (D), Y ] = 1. The
canonical basis polynomials are yn(x) = Yn1, n � 0.

7
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Fix the order p. Let Ŵ = W(D̂). Then we employ the algebra generated by the
operators V̂ = V (D̂) and Ŷ = X̂Ŵ . Note, e.g., that since D̂p+1 = 0, the operators V̂ and
Ŵ are polynomials in D̂. Similarly, since X̂p+1 = 0, the polynomials yn(X̂) are truncated if
n > p. However, for n � p, the correspondence between the polynomials yn(x) and vectors
ŷn = yn(X̂)e0 is exact. Namely, the vector ŷn gives the coefficients of the polynomial yn(x).
The reason this works is that up to order p, the operator X̂ never acts on a power of x greater
than p.

5.1. Examples

Example 5.1. A simple example to illustrate the construction is given by

V (z) = ez − 1, U(v) = log(1 + v),

so W(z) = e−z, Y = Xe−D . The relation X = YU ′(V )−1 reads X = Y + YV or
xyn = yn+1 + nyn yielding the recurrence

yn+1 = (x − n)yn

for n > 0. From y0 = 1, we easily calculate

yn(x) = x(x − 1) · · · (x − n + 1) .

For p = 4, with Ŷ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
1 −1 1 −1 1
0 1 −2 3 −4
0 0 1 −3 6
0 0 0 1 −4

⎞
⎟⎟⎟⎟⎠ we get

Ŷ 2 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
−1 2 −4 8 −15
1 −3 8 −20 43
0 1 −5 18 −46
0 0 1 −7 22

⎞
⎟⎟⎟⎟⎠ , Ŷ 3 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
2 −6 18 −53 126

−3 11 −39 130 −327
1 −6 29 −116 313
0 1 −9 46 −134

⎞
⎟⎟⎟⎟⎠

Ŷ 4 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
−6 24 −95 345 −900
11 −50 219 −845 2255
−6 35 −180 754 −2070
1 −10 65 −300 849

⎞
⎟⎟⎟⎟⎠

and

Ŷ 5 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
24 −119 559 −2244 6074

−50 269 −1333 5497 −15 016
35 −215 1149 −4907 13 559

−10 75 −440 1954 −5466

⎞
⎟⎟⎟⎟⎠

with the first column giving the coefficients of the corresponding polynomial yn, where, since
the leading coefficient equals 1, we can see the truncation beginning in this last.

Example 5.2. Another interesting example is the Gaussian with drift α > 0,

V (z) = αz − z2/2, U(v) = α −
√

α2 − 2v,

8
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the minus sign being taken in U(v) to have U(0) = 0. Then W(z) = 1
α−z

, and

Ŷ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
α−1 α−2 2α−3 6α−4 24α−5

0 α−1 2α−2 6α−3 24α−4

0 0 α−1 3α−2 12α−3

0 0 0 α−1 4α−2

⎞
⎟⎟⎟⎟⎠ .

Powers of Ŷ yield the canonical polynomials, the first few of which are

y1 = x

α

y2 = x

α3
+

x2

α2

y3 = 3
x

α5
+ 3

x2

α4
+

x3

α3

y4 = 15
x

α7
+ 15

x2

α6
+ 6

x3

α5
+

x4

α4

y5 = 105
x

α9
+ 105

x2

α8
+ 45

x3

α7
+ 10

x4

α6
+

x5

α5
.

These are a scaled variation of Bessel polynomials.
In this case U ′(V )−1 = α

(
1 − 2V

α2

)1/2
. Thus, expanding and rearranging the relation

X = YU ′(V )−1,

αY = X + αY

(
V

α2
+

1

2

V 2

α4
+

1

2

V 3

α6
+

5

8

V 4

α8
+

7

8

V 5

α10
+

21

16

V 6

α12
+

33

16

V 7

α14
+ · · ·

)

which translates into

αyn+1 = xyn +
n

α
yn +

n(n − 1)

2α3
yn−1 +

n(n − 1)(n − 2)

2α5
yn−2 + · · ·

= xyn +
n

α
yn +

n∑
k=2

(
n

k

)
(2k − 3)!!

α2k−1
yn−k+1.

Example 5.3. Our final example in this section involves the LambertW function, which
we denote W to avoid confusion with our W . Take V (z) = ze−z [6, v 1, p. 110]. Then
U(v) = −W(−v). We find Y = XeD(I − D)−1 and with p = 7 the corresponding matrix

Ŷ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
1 2 5 16 65 326 1957 13 700
0 1 4 15 64 325 1956 13 699
0 0 1 6 30 160 975 6846
0 0 0 1 8 50 320 2275
0 0 0 0 1 10 75 560
0 0 0 0 0 1 12 105
0 0 0 0 0 0 1 14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One can show that yn = x(x + n)n−1 and that the relation X = YU ′(V )−1 leads to the
recurrence

yn+1 = (x + 2n)yn +
n−1∑
k=1

(
n

k + 1

)
kkyn−k .

9
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5.2. Matrix expansions

Using the unit matrices Eij of size (p + 1) × (p + 1), we can write formulas for the basic
operators. We have used in theorem 3.1 the expressions

D̂ =
p∑

k=1

kEkk+1 and X̂ =
p∑

k=1

Ek+1k.

Then induction yields

D̂j =
∑

1�k�p

1�k+j�p+1

(k)jEkk+j

with (k)j = k(k + 1) · · · (k + j − 1) denoting the rising factorial. Multiplying by X̂ gives

Ŷ =
∑

1�k�p

1�k+j�p+1

Ek+1k+j (k)jwj .

For N > 1, the matrices for Dj and Xj provide the operators Ŷj = X̂μWμi(D̂) as
matrices. Repeated multiplication on the vacuum vector e0 yields exactly the coefficients of
the polynomials yn up to order p, that is, no variable xi appears to a power higher than p.

6. Krawtchouk polynomials

Note. In this section N will indicate a discrete time parameter taking values N = 0, 1, 2, . . . .

We will be working with polynomials in one variable x.
The Krawtchouk polynomials occur as polynomials orthogonal with respect to the

binomial distribution. Here we take the distribution of the sum of N independent Bernoulli
random variables taking values ±1 each with probability 1/2. We start with the generating
function

G(v; x,N) = (1 + v)(N+x)/2 (1 − v)(N−x)/2 =
∑
n�0

vn

n!
Kn(x,N), (7)

where for x the position of the random walk after N steps, (N + x)/2 is the number of positive
jumps and (N − x)/2 is the number of negative jumps. To see this in the form of a canonical
Appell system, we write

G(v; x,N) = exU(v)−tH(U(v)) =
(

1 + v

1 − v

)x/2

(1 − v2)N/2

where we identify t ↔ N ,

U(v) = 1

2
log

1 + v

1 − v
and H(U(v)) = −1

2
log(1 − v2)

so that

V (z) = tanh z and H(z) = log cosh z

with W(z) = 1/V ′(z) = cosh2 z. Now verify that

(cosh D)

(
1 + v

1 − v

)x/2

= 1

2
(eD + e−D)

(
1 + v

1 − v

)x/2

= (1 − v2)−1/2

(
1 + v

1 − v

)x/2

so that

G(x, v;N) = e−NH(D)G(x, v; 0) = (sech D)N exU(v)

appropriately for the canonical Appell system.

10
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The recurrence relation for {Kn} is derived as follows. The recurrence relation for the
canonical polynomials with N = 0 is X = YU ′(V )−1 = Y (1 − V 2). Let yn(x) = Kn(x, 0).
Then Kn(x,N) = (sech D)N yn(x). The recurrence for yn is

x yn = yn+1 − n(n − 1) yn−1. (8)

Now use the relation [f (D), x] = f ′(D) for a function f analytic in a neighborhood of the
origin to get

[(sech D)N, x] = −N(sech D)N−1(sech D tanh D)

= −N(sech D)N tanh D = −N e−NH(D)V (D); (9)

thus, applying (sech D)N to (8) yields

xKn − NnKn−1 = Kn+1 − n(n − 1)Kn−1

or

x Kn = Kn+1 + n(N − n + 1)Kn−1 (10)

with K−1 = 0, K0 = 1.

6.1. Krawtchouk ghosts

The raising operator for the polynomials yn, when N = 0, is

Y = XW(D) = x cosh2 D.

Since Kn = (sech D)Nyn, we have the raising operator R, RKn = Kn+1, given by

R = (sech D)NY (sech D)−N = (sech D)NY (cosh D)N

= (sech D)Nx(cosh D)N+2 = x cosh2 D − N sinh D cosh D

using (9). Acting on polynomials, with V (D) = tanh D, we have the commutation relation

[V (D),R] = 1.

So we have a representation of the HW algebra with the commutator equal to the identity.
Now note that if we set n = N + 1 and n = N + 2 in (10), we get

xKN+1 = KN+2 and xKN+2 = KN+3 − (N + 2)KN+1

so that for n > N , all Kn have KN+1 as a common factor. Expanding the binomials in (7), we
have

Kn/n! =
∑
k�0

(
(N + x)/2

n − k

)(
(N − x)/2

k

)
(−1)k.

The random walk can land on any of the points N,N − 2, . . . , 2 − N,−N in N steps. Let
x = N − 2j , where 0 � j � N , j being the number of negative jumps of the random walk.
Substituting into the generating function (7):

G(v;N − 2j,N) = (1 + v)N−j (1 − v)j =
∑
n�0

vn

n!
Kn(N − 2j,N).

The left-hand side is a polynomial in v of degree N, so that all of the coefficients beyond N
vanish identically. So, Kn(N − 2j,N) = 0 for 0 � j � N , n > N . That is, on the support
of the binomial distribution, KN+1 vanishes. Thus

0 = ‖KN+1‖2 = ‖KN+2‖2 = · · · = ‖KN+k‖2 = · · ·
11
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for k � 1, i.e. the L2-norms of all of the polynomials Kn vanish for n > N . So in the Hilbert
space, these are zeros. From the HW algebra point of view, these are thus ‘ghost states’.

On the other hand, if we consider the lowering operator L satisfying

LKn = n(N − n + 1)Kn−1,

we have the commutation relations

[L,R] = �, [R,�] = 2R, [�,L] = 2L,

which give a representation of sl(2). In fact, for N � 0, we recover the irreducible
representations of su(2).

6.2. Krawtchouk calculus with matrices

In the Krawtchouk Hilbert space, we consider only functions on the spectrum of the operator
X, namely the finite set of points N,N − 2, . . . , 2 −N,−N . We have an (N + 1)-dimensional
space spanned by the polynomials Kn(x,N), 0 � n � N, of bounded degree. So in this
space, the matrix representations X̂ and D̂ of order (N + 1) × (N + 1) will give exact results.

Fix an order p and time parameter N. Take p = N to get the full basis for time N. First,
construct Ŷ = X̂ cosh2 D̂, using e±D̂ . Compute Ŷ n, for 0 � n � p. The first column
of Ŷ n is the coefficients of the ‘time-zero’ polynomial yn. Let ŜN = (sech D̂)N , using
sech D̂ = (cosh D̂)−1. Then, up to order p, for any N � 0,

K̂n(N) = ŜN Ŷn

has first column the coefficients of Kn(x,N).

Example 6.1. We illustrate with N = 5. We find

cosh D̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0
0 1 0 3 0 5
0 0 1 0 6 0
0 0 0 1 0 10
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

sech D̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 5 0
0 1 0 −3 0 25
0 0 1 0 −6 0
0 0 0 1 0 −10
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The raising operator at time zero is

Ŷ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 2 0 8 0
0 1 0 6 0 40
0 0 1 0 12 0
0 0 0 1 0 20
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

12
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Taking p = 5, we collect

Ŷ 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 2 0 20 0 240
1 0 8 0 120 0
0 1 0 18 0 280
0 0 1 0 32 0
0 0 0 1 0 20

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Ŷ 3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
2 0 24 0 496 0
0 8 0 168 0 2720
1 0 20 0 504 0
0 1 0 38 0 680
0 0 1 0 32 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Ŷ 4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 24 0 640 0 10 880
8 0 184 0 4800 0
0 20 0 624 0 10 880
1 0 40 0 1144 0
0 1 0 38 0 680

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Ŷ 5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
24 0 688 0 18 752 0
0 184 0 5904 0 1 03 360
20 0 664 0 18 528 0
0 40 0 1384 0 24 480
1 0 40 0 1144 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

corresponding to the time-zero polynomials yn, 0 � n � 5. These work for any N. For
example, for K4(x, 3), compute

(sech D̂)3Ŷ 4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

9 0 768 0 23 352 0
0 9 0 1294 0 25 160

−10 0 −536 0 −15 792 0
0 −10 0 −516 0 −9520
1 0 40 0 1144 0
0 1 0 38 0 680

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

or K4(x, 3) = x4 − 10x2 + 9 = (x2 − 12)(x2 − 32), vanishing at x = ±1,±3.
And K4(x, 5) corresponds to

(sech D̂)5Ŷ 4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 2480 0 88 120 0 15 64 000
149 0 7728 0 227 032 0
0 −1016 0 −35 616 0 −631 040

−30 0 −1336 0 −38 672 0
0 40 0 1 384 0 24 480
1 0 40 0 1144 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that, in fact, one only needs the first column of Ŷ n for each n, then applying appropriate
powers of sech D̂ produces the polynomials for N > 0.

Here are the polynomials for N = 5:

K0 = 1, K1 = x,

K2 = x2 − 5, K3 = x3 − 13x,

K4 = x4 − 22x2 + 45, K5 = x5 − 30x3 + 149x

13
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and

K6 = x6 − 35x4 + 259x2 − 225 = (x2 − 12)(x2 − 32)(x2 − 52)

accordingly.

6.3. Krawtchouk expansions

The matrix method can be used to compute Krawtchouk expansions for functions f defined
on the spectrum −N, 2 − N, . . . , N − 2, N for N > 0. Start with

G(v; x,N) =
(

1 + v

1 − v

)x/2

(1 − v2)N/2 =
∑
n�0

vn

n!
Kn(x,N).

Substitute v = V (z) = tanh z and rearrange to get, cf (6),

ezx = (cosh z)N
∑
n�0

(tanh z)n

n!
Kn(x,N).

Replacing z by Ds = d/ds, we apply both sides to a function f (s):

exDs f (s) = f (s + x) = (cosh Ds)
N

∑
n�0

(tanh Ds)
n

n!
Kn(x,N)f (s).

Letting s = 0, thinking of f as a function of x instead of s, we can replace Ds by our usual
D = d/dx to get

f (x) =
∑

0�n�N

Kn(x,N)

n!
(cosh D)N(tanh D)nf (0).

In other words, the coefficients of the Krawtchouk expansion of f (x) are given by

f̃ (n) = 1

n!
(cosh D)N(tanh D)nf (0) = 1

n!
(cosh D)N−n(sinh D)nf (0).

If f (x) is a polynomial in x, we can construct a vector from its coefficients, apply the matrices
(cosh D̂)N(tanh D̂)n, rescaling by n!, and find its Krawtchouk expansion.

Example 6.2. Here are the matrices (cosh D̂)5(tanh D̂)n/n! for N = 5, 0 � n � 5. For
n = 0, 1, 2,⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 5 0 65 0
0 1 0 15 0 325
0 0 1 0 30 0
0 0 0 1 0 50
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 13 0 241
0 0 2 0 52 0
0 0 0 3 0 130
0 0 0 0 4 0
0 0 0 0 0 5
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 22 0
0 0 0 3 0 110
0 0 0 0 6 0
0 0 0 0 0 10
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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For n = 3, 4, 5,
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 30
0 0 0 0 4 0
0 0 0 0 0 10
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 0 0 5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let f (x) = x4 + 2x3 − x2 + 5x. One checks by hand, with N = 5, that

f = K4 + 2K3 + 21K2 + 31K1 + 60.

Form the column vector, transpose of [0, 5,−1, 2, 1, 0], and apply each of the above matrices.
Stacking these as row vectors, we have the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

60 35 29 2 1 0
31 50 6 4 0 0
21 6 6 0 0 0
2 4 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

whose first column gives the Krawtchouk coefficients.
Alternatively, start with the top row of (cosh D̂)N . Call it y0. Generate recursively, for

1 � n � N ,

yn = yn−1 tanh D̂/n

and construct the matrix Y with rows y0, . . . , yn, . . . , yN . Applying to the vector of coefficients
of a polynomial gives the coefficients of the Krawtchouk expansion of that polynomial. In
particular, applying to the vector of coefficients of a Krawtchouk polynomial gives a standard
basis vector, zero, except for a single entry equal to 1. That is, Y−1 is a matrix whose columns
are the coefficients of the corresponding Krawtchouk polynomials. For the example above,
we have

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 5 0 65 0
0 1 0 13 0 241
0 0 1 0 22 0
0 0 0 1 0 30
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

15
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and

Y−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −5 0 45 0
0 1 0 −13 0 149
0 0 1 0 −22 0
0 0 0 1 0 −30
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

7. Summary and prospects

In this paper, the one-variable case of the matrix approach has been presented in some detail,
along with the basic theory for the multivariate case. The TAA algebra conveniently replaces
the HW algebra in the finite-dimensional setting. The connection with orthofermions is
interesting and clarifies the underlying structure.

The approach here allows for doing calculations in finite, exact terms. There are many
possible applications including image analysis, optics, as well as quantum information.
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